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Abstract 

Artificial intelligence (AI), with its technologies such as machine perception, robotics, natural language processing, 
expert systems, and machine learning (ML) with its subset deep learning, have transformed patient care and admin-
istration in all fields of modern medicine. For many clinicians, however, the nature, scope, and resulting possibilities 
of ML and deep learning might not yet be fully clear. This narrative review provides an overview of the application 
of ML and deep learning in musculoskeletal medicine. It first introduces the concept of AI and machine learning 
and its associated fields. Different machine concepts such as supervised, unsupervised and reinforcement learning 
will then be presented with current applications and clinical perspective. Finally deep learning applications will be dis-
cussed. With significant improvements over the last decade, ML and its subset deep learning today offer potent tools 
for numerous applications to implement in clinical practice. While initial setup costs are high, these investments can 
reduce workload and cost globally. At the same time, many challenges remain, such as standardisation in data label-
ling and often insufficient validity of the obtained results. In addition, legal aspects still will have to be clarified. Until 
good analyses and predictions are obtained by an ML tool, patience in training and suitable data sets are required. 
Awareness of the strengths of ML and the limitations that lie within it will help put this technique to good use.

Keywords  Artificial intelligence, Machine learning, Supervised learning, Unsupervised learning, Reinforcement 
learning, Orthopaedics, Traumatology

Introduction
Artificial intelligence (AI) and its technologies such as 
machine learning (ML) have the potential to transform 
many aspects of patient care and patient administration 
in all fields of health care [23]. Over the last few years, 
ML techniques have become ubiquitous in more and 
more research fields outside computer science. This 
observation is closely associated with progress within 
computer science, mainly larger computational power 
and memory capacity, allowing ML to regain and even 
increase its popularity [67, 73]. In addition, the avail-
ability of easy-to-use open-source software librar-
ies (e.g., R, cran.r-project.org, Python TensorFlow, 
tensorflow.org) has eased the burden of researchers with 
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noncomputational backgrounds to include these tech-
niques for their research questions. With these advances, 
ML models could reduce their error rates in object rec-
ognition by almost half in the past few years [1, 59], mak-
ing thus ML also more attractive for the medical field. 
Indeed, ML techniques were hardly used in orthopaedics 
and traumatology until 2015. Since then, the number of 
new publications has risen exponentially and continues 
to do so (Fig. 1). Potential benefits of including ML in a 
clinical setting could be better patient care [39, 82], aided 
decision processes for surgeons, [100] or better clinical 
management and resource allocation [39], to name just 
a few. High amounts of digitally collected patients ‘ data 
in large databases and medical registries provide ideal 
working conditions to apply ML techniques to various 
healthcare questions [30]. As such, the field of orthopae-
dics is increasingly suitable for the application of ML as 
the amount of available data in already existing orthopae-
dic registries [e.g., Network of Orthopaedic Registries of 
Europe [105] (Zaffagnini et al.); AAOS Registry Program; 
International Society on Arthroplasty Registers, ISAR] 
belongs to the largest gathered in healthcare. Current 

research on machine learning using clinical data is, how-
ever, still faced with the dilemma that available data sets 
are often unstructured. To make use of these data, they 
first have to be annotated which, to date, usually still 
involves human labour.

However, for many clinicians working with and on 
musculoskeletal medicine, the nature of ML and deep 
learning, its scope, and future possibilities might not be 
fully clear.

This narrative provides an overview of the theoreti-
cal constructs and latest developments in ML and deep 
learning, focusing on musculoskeletal medicine. It first 
introduces the concept of AI and machine learning and 
its associated fields. Different machine concepts such as 
supervised, unsupervised and reinforcement learning will 
then be presented. The review will then delve into deep 
learning and discuss potential developments in the field.

Definition of artificial intelligence
AI was initially described as making a machine behave in 
ways that would be called intelligent if a human were so 
behaving [68, 87]. The concept of “artificial” intelligence 

Fig. 1  Number of publications using machine learning in orthopaedics or traumatology has increased exponentially in the last 10 years. A PubMed 
search was conducted using the search terms “orthopaedics,” “traumatology,” and “machine learning.” The time range includes publications 
until 2022. While these techniques were hardly in use until 2015, the number of new publications has risen exponentially in the last decade 
and continues to do so
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is thereby contrasted with the “natural” intelligence of 
biological life forms.

AI is a broad interdisciplinary approach encompass-
ing several subdisciplines such as ML with its subset 
deep learning, machine perception, robotics, natural lan-
guage processing, or expert systems [87]. AI was devel-
oped to understand, model, and create intelligence of 
various forms [31]. Its different concepts and approaches 
are based on mathematical calculations to generate a 
probabilistic representation of uncertainty, which is then 
used to make predictions about future data or to come 
to decisions based on the given predictions [36]. This is 
especially advantageous in a context, where the abun-
dance of data is too complex to handle with conventional 
means. In such a context, predictive models allow us to 
ascertain the association between variables (e.g., patient 
characteristics) and events (e.g., surgical outcome) use-
ful for decision-making, surgical planning, or postop-
erative rehabilitation protocols [7, 8, 90]. Most forms 
of AI can process not only structured but also semi- or 
unstructured data. Thus, human intelligence is replaced 
by data-driven algorithms integrated into a dynamic 
computing environment. These computational systems, 
albeit still very limited in their actual cognitive dimen-
sion, are intended to possibly in the future also allow 
these systems to learn, reason, consider, reflect, and per-
form cognitive functions typically associated with human 
cognition [7, 44, 82]. Presently, numerous AI applica-
tions have been established that are, however, still largely 
task-specific, and in many cases at an experimental stage. 
One example for an already implemented task specific 
application is the detection of landmarks on X-rays and 
a computer-based planning of component positioning in 
total joint arthroplasty [72]. One rather general problem 
with the implementation of such models is the heteroge-
neity of data in medicine. To be able to design and train a 
model than can reliably predict outcome or recommend 
medical treatments, large data sets need to be available 
that include also long-term follow-up data with subjec-
tive patient reported outcome measures and at the same 
time objective and quantifiable measures.

Machine learning
The development of AI applications is usually triggered 
or accompanied by the implementation or at least signifi-
cant improvements of other computer-related techniques 
that allow AI to receive input from the environment. In 
the last decade, for example, great advances have been 
made in the field of computer vision. Computer vision 
based on AI can now directly extract information from 
images and videos. AI-based tools can thus be trained to 
interpret radiographs. In the musculoskeletal field, radio-
graphic imaging is, for example, essential to diagnose and 

manage fractures and trauma cases in emergency rooms 
as it provides a quick and cost-effective method to iden-
tify bone pathologies. Despite its widespread use, how-
ever, radiographic misdiagnoses remain common in the 
fast-paced, high-pressure ER environment. These errors 
can lead to delays in treatment, inappropriate manage-
ment, and long-term complications. In this context, 
integrating properly trained artificial intelligence mod-
els can help reduce misdiagnoses, improve diagnostic 
accuracy, and ultimately enhance patient outcomes [77]. 
In a review article by Oeding and colleagues from 2024, 
for example, the majority of AI models demonstrated 
comparable or even better performance compared with 
human experts in detecting scaphoid and distal radius 
fractures [78]. In addition, in an elective setting, the use 
of ML techniques is increasingly helpful, as it has been 
shown to be able to give estimates on predicted disease 
progression of osteoarthritis and treatment outcomes 
[60]. Moreover, AI can be trained to screen for implant 
loosening on radiographs [54], measure knee alignment 
[93], and use these data to evaluate the radiological result 
of a performed total knee replacement [11].

Machine perception
Computer vision can also be used in the application of 
augmented reality. Augmented reality is a technique that 
provides the user with additional visual, auditory, haptic, 
somatosensory, or olfactory input [17]. In medicine, the 
application of augmented reality has been observed to 
lower the user’s cognitive burden. In pre-clinical cadav-
eric and sawbones models, augmented reality could 
also reduce operative time and radiation exposure while 
improving surgical precision (reviewed by [34]). An 
orthopaedic application related to computer vision is its 
use in total knee arthroplasty (TKA). When exposed to 
adequate radiographs, AI can help with the preoperative 
planning of the implant [6, 60].

Robotics
When, next to the radiographic data, providing an AI 
system with information on flexion/extension gaps or 
when measuring patella tracking, AI helps to optimise 
the intraoperative decision-making algorithm, resource 
allocation, implant selection and implant position-
ing [6, 18, 62, 81]. The two primary clinical applica-
tions here are TKA navigation (e.g., OrthoPilot® from 
Aesculap®) or TKA-robotics. TKA-robotics are available 
both as semi-active (e.g., MAKO™ from Stryker™; CORI 
from Smith&Nephew; OMNIBotics knee system from 
OMNIlife Science) or active systems (e.g., VELYS™ from 
DePuy Synthes; TSolution One from Think Surgical; 
ROSA Knee robotic system from Zimmer Biomet). For 
these navigation or robotic techniques, data are collected 
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on the geometry of the bone surface and the movement 
of the extremity. Computational algorithms calculate 
implant alignment and soft tissue balancing based on this 
input.

Natural language processing
At the interface of the computational AI system and its 
perception of the environment is natural language pro-
cessing (NLP). This refers to computational techniques 
used to extract meaning from humans’  written or spo-
ken language. As such, everyday linguistic tasks, such 
as describing language or finding a semantic context, 
are core elements of NLP. NLP basic algorithms usually 
break down a sentence into its essential compounds, such 
as words, and count the occurrence of each of them in 
a sentence. A more complex task in NLP would be to 
reduce disambiguation in the semantic context of words 
(e.g., the"surgical instrument"versus the"musical instru-
ment"). Until now, NLP in orthopaedics has mainly been 
used for the automated recognition of dictated doctors’ 
reports, for example, from the consultation or the opera-
tion theatre [74]. Other applications, especially in the 
field of orthopaedic or trauma research, are the analysis 
of patient-reported outcome measures [38], the study of 
medical reports, such as radiological reports (e.g., evalu-
ation of the presence of periprosthetic femur fractures) 
[95], or, e.g., the identification of common elements 
in reports (e.g., certain infections following a surgery, 
reviewed by [101]).

Expert systems
Expert systems are computer systems that simulate the 
decision-making capabilities of a human expert [80]. 
These systems are designed to solve complex problems 
by reasoning through existing bodies of knowledge. One 
subcategory is medical expert systems. These systems 

can capture domain knowledge from existing literature 
and human experts and offer justified diagnostic or ther-
apeutic recommendations [88]. Creating expert systems 
is done the following way: first, a knowledge base has to 
be obtained on the investigated issue (e.g., sports trauma 
of the knee; hospital-acquired respiratory tract infection). 
This is done by thorough literature research and usu-
ally investigation of experts. Then, a reasoning engine is 
created that emulates an intelligent expert system diag-
nosis, which allows the user to quickly find diseases, 
diagnose injuries and get the best rehabilitation [15]. 
Medical expert systems are already in use, e.g., for clas-
sifying medical errors [55]. A typical „dialogue “ between 
medical staff and the medical expert system is described 
in Table 1.

Despite numerous implementations of AI in orthopae-
dics, its application has several limitations in daily clini-
cal practice. Understanding the concepts of AI will help 
to also better understand its limitations and imagine its 
potential. One subdiscipline of AI is ML with its sub-
set deep learning, which will now be further elaborated 
upon.

Machine learning and deep learning
While AI is generally based on the idea that a machine 
can imitate human intelligence (i.e., to solve complex 
problems based on logic or decision-making trees), 
ML is explicitly task-specific and focuses on the learn-
ing process for specific tasks only. The learning process 
thereby serves solely the purpose of improving the results 
obtained for the designed task. ML is based on algo-
rithms at the intersection of statistics, computer science, 
and AI. Since it lacks the"intelligence"aspect, it can only 
process structured and semi-structured data (except deep 
learning, see below) (Fig. 2). ML focuses on two closely 
connected aspects: first, on creating computationally 

Table 1  Typical"use-case"scenario for expert systems

In this example, a patient has been admitted to the hospital with complications arising from influenza. After an appropriate recovery time, however, no physical 
improvement was apparent (permission from [55]

Is the patient female or male? Male

How old is the patient? 43

Did the patient stay overnight? Yes

How many days? 7

State the number of medical staff that had contact with the patient. 6

Did the patient come into contact with staff through the following: medical devices, food, dispensations, etc.? Yes

Does the hospital have a hand-cleansing protocol for staff? No

The patient is likely to have contracted a hospital-acquired infection given the absence of a hand-cleansing protocol. This suggested outcome 
has a 75% certainty based on the following elements:
- patient overnight
- patient exposed to more than 5 medical staff members
- no hand-cleansing protocol at hospital
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based models that automatically improve through train-
ing. Second, ML also addresses the underlying statistical 
and computational laws which govern learning systems 
[46]. On a comprehensive level, a learning system can be 
defined as the query of improving certain performance 
measures when executing a specific task [46]. An exam-
ple of how ML can help in orthopaedics to recognise a 
pathological condition on an X-ray is provided in Fig. 3.

The three most widely used ML methods are super-
vised, unsupervised, and reinforcement learning (Fig. 4) 
[46]. Hybrid methods such as semi-supervised learning 
or multi-instance learning additionally exist. However, 
these will not be separately covered in this review.

Supervised learning
The idea of supervised learning algorithms (Fig.  4A) 
is that they create an ML model based on labelled 
data to generalise as accurately as possible [104]. The 
model is then trained to make accurate predictions 
on unknown data with the same characteristics as the 
labelled data. The workflow of supervised learning 
algorithms is as follows: a large set of training data of 
the form [(× 1, y1), …, (xn, yn)] is given. This training set 
could, e.g., take the form of [( femur1, bone), (radius1, 
bone), (Achilles ‘ tendon1, tendon), (patellar tendon1, 

tendon),…]. The training set is composed of a sample 
of independent and identically distributed pairs. Dur-
ing training, the machine is shown an image and pro-
duces an output in the form of a vector of scores, one 
for each category [59]. Then, the learning algorithm 
tries to find an objective function g from a space of pos-
sible functions G. This function g is chosen to map the 
input and output data best. In other words, the error 
(or distance) between the output data and the input 
data is tried to get minimised. This is done by adjusting 
internal parameters to reduce the error [59]. To test if 
a generalisation of the model is valid, the performance 
of the model after training is measured on a different 
set of examples that the model has never seen during 
training [59]. Given its nature, supervised learning is 
most commonly used in  situations involving regres-
sion or classification problems [91]. Common algorith-
mic methods to map supervised learning are decision 
trees, decision forests, logistic regression, support vec-
tor machines, neural networks and Bayesian classifiers 
[94]. Supervised learning requires labelled data, as is 
the case, for example, in orthopaedic or trauma reg-
istries: osteoporotic fractures of the pelvis, for exam-
ple, have often several occult fracture sites which are 
difficult to detect but which have implications on the 

Fig. 2  Within the concept of artificial intelligence, deep learning forms the"intelligent"subset of machine learning
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following treatment. Radiologic evaluation of peripros-
thetic infections of the hip or knee also remains a chal-
lenge for the clinician [40]. Connecting classifying data 
of these conditions with the original radiologic images 
might enable a neural network to evaluate these images 
independently. Uploaded original radiographs in reg-
istries is, however, still uncommon. For the German 
Arthroplasty Registry such a module is presently being 
discussed. Further already published applications of ML 
in orthopaedics are, for example, preoperative surgical 
assessment to identify optimal sagittal implant position 

in TKA [29], prediction of revision surgery after pri-
mary hip arthroscopy [66], prediction of surgery out-
come such as survival rates in patients after treatment 
for chondrosarcoma [10], outcome after surgery of long 
bone metastasis [43], prediction of length of stay before 
primary TKA [45,76] or hip fracture [48], identification 
of patients at risk for prolonged opioid use after knee 
arthroscopy [63]. Already tested imaging applications 
are, for example, dual X-ray absorptiometry to detect 
hip fractures [57], CT scanning to detect lumbar osteo-
porosis [75], or relapse in rheumatoid arthritis patients 
using data on ultrasound examination [67].

Fig. 3  Machine learning model to detect osteolysis in a plain knee radiograph. Labelled input radiographs of healthy and pathological knees 
are given to the system. The training model then decomposes these images into grey value pixels. The model defines edges at areas of transition 
from higher to lower grey values. These edges are then aligned with the already-learned anatomy of a healthy knee radiograph. This feature 
extraction process involves identifying and capturing essential healthy and pathological knee characteristics. Aberrant lines are finally marked 
and labelled as pathologic. For the model creation, this process is repeatedly iterated to improve the diagnostic value of the model further
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Unsupervised learning
In certain situations, for example, when trying to dis-
cover structural properties in unlabelled data, a different 
method is usually applied, termed unsupervised learn-
ing (Fig.  4B). Unsupervised learning algorithms aims to 
find naturally occurring patterns or groupings within 
the data without any input from the user [91]. These 
structural properties can be algebraic, combinatorial or 
probabilistic [46]. Unsupervised learning methods allow 

compression of the information in a data set into fewer 
features, reducing the dimensionality of data [24, 46, 91]. 
The exploratory nature of unsupervised learning tech-
niques is beneficial for identifying patterns and structures 
in high-dimensional data or high-dimensional problems 
[24]. Standard dimension reduction methods include 
principal component analysis, manifold learning, autoen-
coders, and factor analysis. These methods make differ-
ent assumptions concerning the underlying manifold 

Fig. 4  Three most common machine learning (ML) techniques. A machine learning model can be thought of as a complex web of interconnected 
nodes. Setting up an ML model involves two different kinds of data types: in the first step, training data are used to train the model. Once the model 
is set up in terms of its internal parameters, an unknown test dataset  is used in a second step to validate the model. Finally, the model is used 
on new data. A Supervised learning problems can be sub-grouped into classification and regression techniques. In supervised learning, labelled 
data are used to train the model. This means that labelled input data are associated with a known outcome. The model is then trained on these data 
by an iterative process until fine-tuning of the model has been achieved. The model thus learns which features define the input data and how to 
identify them. This is done by applying weights, which represent numerical values assigned to connection nodes of the model. Weights determine 
the strength of these individual connections in the web of interconnected nodes and as such how strongly the output of a node influences 
another node’s input. Predictions made by supervised models can either be discrete or continuous. A model that produces discrete output data 
is a classification model (e.g., the result: tumour malignant or benign), and one that produces continuous output data is a regression model (e.g., 
the tolerable dose of a certain medication). B Unsupervised learning is used, e.g., clustering. Here, raw unlabelled data objects (on the left side) are 
provided as input. Training the model is also an iterative process. The results of unsupervised learning are often different clusters (as shown here 
with the non-overlapping geometrical shapes on the right). Clustering algorithms are used to assort the given data into groups that share common 
structures or patterns. C Reinforcement learning differs from supervised and unsupervised learning. In reinforcement learning, the model learns 
by the interactions between a decision maker/agent and its surrounding environment. The decision maker/agent selects an action according 
to its policy. Depending on the nature of the change in the environment, this action can be positive ("reward") which would reinforce the previous 
behaviour of the model, or negative ("punishment"). The goal of the model is to maximise its rewards
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[46]. Clustering techniques are another example of unsu-
pervised learning algorithms. Clustering methods usually 
calculate similarity and then use this similarity to group 
objects into clusters which are not known in advance. 
The clustering output is only helpful if the clusters corre-
spond to the data, e.g., biologically relevant features that 
were not used to define the grouping. As such, external 
information is needed to judge the validity of clusters 
[3]. Both the dimension reduction and the clustering 
methods are preeminent in terms of their computational 
complexity, given that the goal is to exploit massive data 
sets when leaving out labelled data [46]. Recently, a clas-
sification tool for scoliosis using non-invasive surface 
measurements without prior knowledge of radiographic 
data was trained by unsupervised learning [20]. Other 
recent applications created by unsupervised learning are 
the identification of subgroups of patients at high, aver-
age or low fracture risks [56], the identification of diver-
gent movement patterns that discriminate low back pain 
patients from healthy controls [51], the identification of 
vulnerable subpopulations among patients undergoing 
TKA or total hip arthroplasty patients based on only pre-
operative blood sample analysis [85], identifying patient 
clusters to predict quality of life after TKA [41].

Reinforcement learning
Reinforcement learning differs from the two forms of 
ML presented above. The training data in reinforcement 
learning are assumed to only indicate whether an action 
is correct or incorrect instead of displaying the proper 
output for a given input. In other words, reinforcement 
learning is a goal-directed learning technique. Learning 
occurs by interacting with the surrounding environments 
and observing status changes [19, 22, 46] (Fig.  4C). A 
typical and illustrative reinforcement learning scenario 
would be identifying the best possible racing line for a car 
in a computer game. The algorithm starts with random 
courses plotted for the vehicle. Each time in the iterative 
process, the algorithm exceeds its results from the pre-
vious random course during a predefined section of the 
race track, a reward is allocated to the programme. In 
case the performance is worse, a punishment is assigned. 
A formal description of reinforcement learning would 
thus be as follows: a problem is defined as consisting 
of a set of states in which the learning agent might find 
itself and a set of actions the agent can take. This setting 
then includes a transition function that describes how 
the environment will respond to the agent’s actions and a 
reward function that defines how good (or bad) observed 
events are. The reinforcement learning algorithms 
improve through the history of sequences of interaction 
(called histories) between the decision maker and their 
environment.

In a clinical setting, reinforcement learning algorithms 
have been tried, for example, to optimise sequences of 
decisions for long-term outcomes. Faced with a patient 
with sepsis, for example, the doctor in intensive care 
must decide if and when to initiate and adjust treatments, 
such as antibiotics, intravenous fluids, vasopressor 
agents, and mechanical ventilation. Each choice affects 
the patient’s survival at the end of the hospital stay and 
the patient’s quality of life upon recovery [37]. To per-
form sequential decision-making, such as for sepsis man-
agement, treatment-effect estimation must be solved at a 
grand scale and include numerous variable parameters. 
Reinforcement learning allows to take action in response 
to the changing environment and it can also include indi-
vidual aspects of the patient [107].

Neural networks and deep learning
Deep learning is the subsection of machine learn-
ing based on artificial neural networks. As in other 
ML applications, these networks consist of an input 
layer, where data are entered and an output layer where 
results are obtained. In contrast to conventional ML, 
in"intelligent"deep learning, multiple such layers are 
superimposed, containing simple but non-linear mod-
ules. Each layer of interconnected nodes transforms the 
data from the previous layer into a representation at a 
higher, slightly more abstract level, leading to very com-
plex functions [59].

Moreover, deep learning uses built-in algorithms, 
which modulate the programme to adapt its internal 
parameters to compute the representation in each layer 
from the representation in the previous layer. The mul-
tiple processing layers combined with their adaptive and 
recursive nature thus allow the programme to learn rep-
resentations of data with various levels of abstraction 
through iterative adjustment [59] (Fig.  5), making deep 
learning so powerful. Moreover, the more data you feed 
in, the better the programme gets [14]. With the large 
amount of digital data that is now increasingly available, 
deep learning models are also increasing. In contrast to 
other ML techniques, deep learning is also capable of 
processing unstructured data without pre-processing 
usually required for ML techniques [42].

Using deep learning, image processing algorithms 
were developed that clearly outperformed conventional 
methods. In October 2015, for the first time, a computer 
programme could beat a human expert in the highly cog-
nitively demanding game of Go [64, 92]. Autonomous 
driving would not be possible without deep learning-
based image recognition [33]. Typical deep learning neu-
ral network types are the convolutional neural network 
or the recurrent neural network.
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In a clinical setting, deep learning has already been suc-
cessfully used in image-based techniques to classify frac-
tures, osteoarthritis, bone age, tendon tears (reviewed 
by [4] or to analyse the alignment of the spine [103] or 
the lower extremity [70]. In addition, decoding lower-
limb kinematic parameters was demonstrated using deep 
learning approaches [9, 27, 65]. Even automated recog-
nition of bone metastases on bone scintigrams has been 
described [61]. An example of how an algorithm archi-
tecture to detect bone metastases on radiographs of the 
knee is shown in Fig. 4. It is worth noting that deep learn-
ing can also affect medical disciplines outside the purely 
medical scope, such as healthcare facility management 
[69]. Deep learning has thus the potential to be one of the 
most transformative technologies to impact orthopaedic 
surgery. However, for this to happen, the clinical knowl-
edge necessary to identify orthopaedic problems and the 
technical expertise needed to implement deep learning-
based solutions must come together [79].

Discussion
Although medially omnipresent, AI and ML are probably 
still a black box to many orthopaedic and trauma special-
ists. This review aims to provide a basic understanding of 
what these techniques encompass, how they work, and 
how they may be used in orthopaedics and traumatology. 

Understanding the underlying concepts of AI and ML 
will help to better understand their limitations and imag-
ine their potential.

Over the last few years, ML has become a very popu-
lar method to analyse large data sets. Its subdiscipline, 
deep learning, is now increasingly being used. While 
deep learning neural networks are difficult to set up, their 
power outperforms by far that of conventional ML [2].

ML techniques offer the window for a new set of 
knowledge. Learning from big data allows us to recog-
nise relationships and associations that are impossible to 
approach with conventional data curation. While clas-
sical statistical methods focus on inference, machine 
learning allows conclusions about both inference and 
prediction [14]. Automation through ML can cut down 
on required staff, which is critical in an ageing Western 
society. Although validation between different institu-
tions and even countries would still be required, such 
ML models can principally be implemented globally. 
Although there is a huge body of literature emerging in 
scientific databases presently, many of the presented 
models are still far from a quality that would justify their 
implementation in everyday practice. To date, ML mod-
els are particularly effective when being used as clinical 
decision support systems instead of being used as stand-
alone solutions [96]. In case that such models meet, 

Fig. 5  Exemplary neural-network architecture to detect sarcoma in a conventional knee radiograph. Adapted from Schulz et Behnke [89] 
with permission. In this example, four layers are superimposed: 1. The computer identifies pixels of light and dark. 2. The computer learns to identify 
edges and simple shapes. 3. The computer learns to identify more complex shapes and objects and integrates them into the notion of a bone 
radiograph. 4. The computer learns which shapes and objects can be used to identify a sarcoma in a human bone radiograph
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however, the needed criteria of validity, reliability and 
effectivity, their economic impact would be of relevance 
both on a microeconomic and a macroeconomic level. 
Therefore, although initial setup may be associated with 
financial investment, it can eventually reduce local and 
global costs [53].

ML programmes are still generally task-specific and 
thus limited in their flexibility. Within their designated 
task, ML more and more achieves comparable results as 
humans or even outperforms them through higher preci-
sion, reliability and reduced error rate [58, 98, 99]. This 
is also due to the fact, that ML algorithms continuously 
improve by further data input [47]. This will eventually 
lead humanity to a place that is hard to foretell. At least 
from a human brain’s perspective, the calculation power 
is almost unlimited in computers. The speed with which 
tasks can be performed and decisions can be reached 
is often in the order of magnitude from milliseconds to 
seconds. While this is generally a convenient feature, this 
speed is especially advantageous in the trauma and emer-
gency setting, where many decisions are time-critical.

Next to all these powerful strengths of ML, several 
weaknesses and limitations still lie in that technology. 
Many supervised learning studies in the literature were, 
for example, purely conducted retrospectively [25, 28, 49, 
52, 97, 106]. This means the outcome was already trans-
parent and independent of the ML calculation. This rep-
resents a very valid approach when trying to figure out 
a meaningful ML technique to predict future cases. One 
has to take into consideration, however, that such a study 
design makes these created ML algorithms more prone 
to hidden or intentional biases [26]. Clinicians require, 
however, transparent and explainable results to trust 
and integrate AI-driven recommendations into decision-
making processes. Future research should, therefore, give 
more importance to testing ML systems prospectively. As 
stated above, ML algorithms can continuously improve 
[47] with more and more data being fed to the system. 
Especially in newly developed knowledge areas, such suf-
ficiently large data sets might, however, simply not be 
available. Sometimes, these data sets take years to imple-
ment before an ML algorithm can even start, as is the 
case for arthroplasty registries.

One weakness of ML tools is that their faulty diagno-
ses can be challenging to detect and correct as this usu-
ally requires going through the entire decision-making 
process  [26, 83]. It may be misleading, to accept rec-
ommendations from a deep-learning decision if the 
role of different factors influencing the model’s deci-
sion is unknown or not evaluated. In a recent study, 
[5], reported that their trained programme to recognise 
hip fractures on conventional radiographs only reached 
reasonable results when taking into consideration 

non-imaging patient factors. When having to base the 
decision on X-rays alone, the model performed at ran-
dom, highlighting a rather questionable role of context 
factors in the decision-making process. The authors 
conclude that, if computer algorithms inexplicably lev-
erage patient and process variables in their predictions, 
it remains unclear how doctors should interpret such 
predictions in the context of other known patient data 
[5]. To obtain a good ML programme, extensive feeding 
of the system and continuous input of newly acquired 
data are thus necessary. ML can only deal with situa-
tions it has been trained for. It, therefore, needs to be 
borne in mind that it can only address statistical rather 
than literal truths [26, 83].

For many questions addressed by ML, especially with 
interval-scaled data, other techniques can also objectify 
the targeted outcome. This means that the performance 
of the algorithm can be objectively quantified, such as the 
size of a tumour or the blood flow in a vessel. In medi-
cine, many questions are, however, more complex. This 
is especially the case when a dichotomous parameter is 
allocated for a condition that biologically is most likely 
a continuous variable, such as the presence of rheuma-
toid arthritis. In mild cases, it is often not clear if the 
patient has rheumatoid arthritis or not. The decision as 
to whether a specific patient has rheumatoid arthritis 
or not is then based on a personal judgement consider-
ing various criteria [50]. There are, however, no objective 
means to verify this decision by some other independent 
technique. In these circumstances, an ML tool can, at 
best, be as good as the human observer due to a lack of 
an objectifiable ground truth beyond the human judge-
ment. Although an ML algorithm could thus theoreti-
cally outperform a human in such decisions, it will be 
hard to actively program it to that end. Even in case of 
an ML model superiority, the lack of a clear ground truth 
makes validation of the success of such a model a major 
scientific challenge. For a summary of the strengths and 
weaknesses of ML, see also Table  2. Depending on the 
local background, regulatory and ethical issues, such as 
patient privacy, informed consent, and a need for ade-
quate validation of AI tools, can make the integration 
of AI into existing healthcare infrastructures even more 
complicated.

Overcoming the challenges of using AI and machine 
learning in musculoskeletal medicine requires a multifac-
eted approach. First, improving data quality is essential 
for training more accurate models. This can be achieved 
by ensuring large, diverse, and representative well-anno-
tated data sets that reflect the full spectrum of musculo-
skeletal conditions. Efforts to standardise data collection 
methods and address issues of data privacy and security 
will help to reduce biases and inaccuracies.
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Second, developing interpretable AI models can fos-
ter greater clinician trust by making model predictions 
more transparent and understandable. Collaborative 
efforts between AI developers, clinicians, and regula-
tory bodies can facilitate the creation of standards for AI 
tool validation, ensuring their reliability and safety before 
clinical use. Finally, by including user-friendly interfaces 
and involving clinicians in the development process, we 
can ensure that AI tools align with real-world clinical 
practices.

Future developments
Presently, it is still necessary to have a human gatekeeper 
supervising the development of algorithm improvements 
[104]. This can also be recommended to minimise the 
risk of automated biases arising from the data. Whether 
this gatekeeper function can and/or shall be eliminated in 
the future is not just a technical, but also a philosophical 
question.

One of the critical capabilities of ML is to find trends 
and predict future tendencies by applying large data sets 
[14]. Looking back on revolutionary medical advances 
over the past decades, excellent improvement potential 
is presently seen in further individualising treatment 
strategies. An interesting conundrum is how to bridge 
the gap between highly personalised medicine on the 
one hand and the generalising directions given by ML 
techniques. Despite the increasing availability of massive 
data sets, the predictive power of most of the available 
disease models still needs to meet the requirements for 
clinical practice. Predictive disease models must cover all 
relevant biotic and abiotic mechanisms driving disease 
progression in individual patients [32]. An exciting solu-
tion could be provided by so-called hybrid models that 
offer an integrative approach by combining a validated 
mechanical model with a data-driven ML model [32].

Presently, ML can only partly replace human intel-
ligence in medicine. A dual complementary function is 
conceivable for numerous applications [16], as it has been 
used for electrocardiograms for decades [86]. The first 
analysis is done by the AI, which is then double-checked 
and verified by a human observer. This step will often 
remain necessary, given the susceptibility of ML to error. 
Freeing up humans, however, from one or two critical 
tasks within a complex process already improves the total 
outcome, since humans can then focus better on more 
vital tasks [26].

Concerning future developments in the field, we may 
expect a deeper market penetration of commercially 
available tools and devices based on machine learn-
ing. This includes the further propagation of robotics 
in surgery, notably arthroplasty and spine surgery [35], 
augmented reality in tumour or reconstructive surgery 
[13, 71], assisted imaging analyses and increasing vocal 
interfaces with computers through enhanced NLP. We 
expect that personalised AI-supported musculoskel-
etal medicine will allow to track specific disease condi-
tions over time, allowing early intervention and proactive 
management. In addition, patient-specific anatomy will 
increasingly be integrated into virtual models [102], 
thus improving pre-operative planning and execution. 
Employing AI-driven rehabilitation tools or robotics-
assisted rehabilitation will also allow a more personalised 
recovery regime and thus individualised treatment plans. 
For a broader scope on the future importance and impli-
cations of AI in healthcare in general, please see [12].

At least for the next decade, these changes will most 
likely be linear, which means that they may also be 
extrapolated from our present standpoint. The signifi-
cant and unknown Jack-in-the-box in ML is presently 
the potential development of quantum machine learn-
ing. Presently, these computers still need to be readily 

Table 2  Strengths and weaknesses of machine learning

Strengths Weaknesses

Automation of tasks is possible ML is task-specific

Can reduce work-load, staff and cost High implementation and maintenance costs

Once established and validated, model is globally useable Can only be used in fields, where sufficiently large data sets are available for training

Can provide real-time feedback and fast decisions Quality of the ML product is highly depended on the quality and quantity of available data

High precision, reliability and low error rate for simple tasks 
such as object recognition when adequately trained

Prone to faulty diagnosis. ML is useful when results are double checked with expert

Recognises relationships in large data sets that are impos-
sible to grasp with conventional statistical means

Prone to systemic bias given the choice of data or algorithm ("subgroups"with little data 
not adequately represented)

Model improves over time “Black box problem”: ML model does not provide information how predications were 
achieved

Generates only reliable predictions if the situations concerned are present in the training 
data
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available on the market. Given the high maintenance 
requirements, high costs and lack of standardised opera-
tion systems, quantum computing is also not ready to 
be accessible to"normal research". First companies have 
begun, however, to offer opportunities to use cloud-
based quantum computing (e.g., Google Quantum AI, 
Amazon Braket, IBM Quantum Qiskit, Microsoft Azure). 
Quantum computing provides exponentially more stor-
age and processing power than binary bit-based comput-
ing technology. Numerous applications are conceivable 
in life sciences, including orthopaedics and traumatology 
[21, 84]. Where this development will take us is presently 
hard to fathom. The potential seems enormous. To date 
ML models based on binary computation can be worse, 
equally good, or better than humans in their task-specific 
performance—depending on the preceding training, 
the quality and quantity of the data and the underlying 
algorithm.

Conclusion
ML and its subset deep learning have seen dazzling 
improvements over the last decade. ML offers powerful 
tools now suitable for numerous applications to be imple-
mented in clinical use. While the initial setup costs are 
high, these investments will likely pay off by reducing 
workload and cost. Until good analyses and predictions 
are obtained by ML, patience in training and suitable 
data sets are required. Joint efforts should be undertaken 
to standardise data collection and data set annotation 
techniques. Collaborative efforts between AI developers, 
clinicians, and regulatory bodies could facilitate the crea-
tion of standards for AI tool validation, ensuring their 
reliability and safety before clinical use. Finally, by includ-
ing user-friendly interfaces and involving clinicians in the 
development process, we can ensure that AI tools align 
with real-world clinical practices.

Knowing the strengths and weaknesses of ML will help 
to put this technique to good use wisely. For the next 
decade, in a clinical setting especially, a complementary 
function to human tasks can be expected. Where this 
journey will further take us is still hard to say. A good ML 
tool might help to predict it.
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